Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 61(12): 1181-1198, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35666749

RESUMO

Two distinct diseases are associated with the deposition of fibrillar amyloid-ß (Aß) peptides in the human brain in an age-dependent fashion. Alzheimer's disease is primarily associated with parenchymal plaque deposition of Aß42, while cerebral amyloid angiopathy (CAA) is associated with amyloid formation of predominantly Aß40 in the cerebral vasculature. In addition, familial mutations at positions 22 and 23 of the Aß sequence can enhance vascular deposition in the two major subtypes of CAA. The E22Q (Dutch) mutation is associated with CAA type 2, while the D23N (Iowa) mutation is associated with CAA type 1. Here we investigate differences in the formation and structure of fibrils of these mutant Aß peptides in vitro to gain insights into their biochemical and physiological differences in the brain. Using Fourier transform infrared and nuclear magnetic resonance spectroscopy, we measure the relative propensities of Aß40-Dutch and Aß40-Iowa to form antiparallel structure and compare these propensities to those of the wild-type Aß40 and Aß42 isoforms. We find that both Aß40-Dutch and Aß40-Iowa have strong propensities to form antiparallel ß-hairpins in the first step of the fibrillization process. However, there is a marked difference in the ability of these peptides to form elongated antiparallel structures. Importantly, we find marked differences in the stability of the protofibril or fibril states formed by the four Aß peptides. We discuss these differences with respect to the mechanisms of Aß fibril formation in CAA.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Amiloide , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Angiopatia Amiloide Cerebral/genética , Angiopatia Amiloide Cerebral/patologia , Humanos , Iowa , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Placa Amiloide/patologia
2.
Appl Microbiol Biotechnol ; 105(12): 4855-4878, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34086116

RESUMO

Time and again, yeast has proven to be a vital model system to understand various crucial basic biology questions. Studies related to viruses are no exception to this. This simple eukaryotic organism is an invaluable model for studying fundamental cellular processes altered in the host cell due to viral infection or expression of viral proteins. Mechanisms of infection of several RNA and relatively few DNA viruses have been studied in yeast to date. Yeast is used for studying several aspects related to the replication of a virus, such as localization of viral proteins, interaction with host proteins, cellular effects on the host, etc. The development of novel techniques based on high-throughput analysis of libraries, availability of toolboxes for genetic manipulation, and a compact genome makes yeast a good choice for such studies. In this review, we provide an overview of the studies that have used yeast as a model system and have advanced our understanding of several important viruses. KEY POINTS: • Yeast, a simple eukaryote, is an important model organism for studies related to viruses. • Several aspects of both DNA and RNA viruses of plants and animals are investigated using the yeast model. • Apart from the insights obtained on virus biology, yeast is also extensively used for antiviral development.


Assuntos
Saccharomyces cerevisiae , Vírus , Animais , Vírus de DNA , Proteínas Virais , Replicação Viral
3.
3 Biotech ; 11(2): 65, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33489683

RESUMO

Newcastle disease virus is a member of family Paramyxoviridae that infects chicken. Its genome comprises ~15.2 kb negative-sense RNA that encodes six major proteins. The virus encodes various proteins; among all, nucleocapsid (NP) and matrix (M) help in virus replication and its budding from the host cells, respectively. In this study, we investigated the intracellular distribution of NP and M upon expression in the yeast Saccharomyces cerevisiae. We observed nuclear targeting of M, and vacuolar localization of NP was observed in a fraction of yeast cells. Prolonged expression of GFP fused NP or M resulted in altered cell viability and intracellular production of reactive oxygen species in yeast cells. The expression of viral proteins did not alter the morphology and number of the organelles such as nucleus, mitochondria, endoplasmic reticulum, and peroxisomes. However, a significant effect was observed on vacuolar morphology and number in yeast cells. These observations point towards the importance of host cellular reorganization in viral infection. These findings may enable us to understand the conserved pathways affected in eukaryotic cells as a result of viral protein expression. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-020-02624-4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA